% An Automated Mock Object ﬂ‘@

Generator for C++

Scott Miller

Greg Pattison

S/
R Welcome!
Who We Are:

*Scott Miller & Greg Pattison of Atomic Object
25 years (combined) of software development

Employing Agile techniques since 2005

(@ Why? V)

Why we wanted a C++ mock generator:
*Began working together on a new C++ project

We wanted to apply interactive-based testing techniques
we had used on previous projects (.Net & Java)

*Tried hand-coding a few mocks, but this was time
iIntensive and error prone

& Evolution ﬂ

*We looked around for an existing product or project.

*We found some stuff (mockcpp for one), but not a “Record &
Playback” verification system we liked so much for our Java and C#
projects

& Evolution ﬂ

*We wrote a few Python scripts to generate templates to ease the
hand-coding of mocks

& Evolution ﬂ

* The discovery of GCCXML led to the first full-blown mock object code
generator.

* The generator evolved over the course of the project, gaining
functionality, but also acquiring a QT dependency

) Evolution

P

*Moxy 2.0 is what we are showing you today. It has no platform
dependencies

=

@ GCCXML /)>

The Greatest Invention Known to Man

«Before this project had begun, | had played around a couple times with
parsing C++ header files, but never really got anywhere.

*Then, early in the C++ project | read an article that mentioned a cool
project that parsed C++ code into XML.

@ GCCXML /)>

What's more, there was also a Python library that read in the XML
result of the parse and presented the information in a simple class.

* This was the tool we were waiting for. It opened up the possibility of
generating C++ code based on an existing interface definition.

@ GCCXML ﬂ

* Thanks to Brad King, Kitware developers and The Insight Consortium
for this fabulous tool.

ST .
1 The Interface ﬂ

An example of a C++ interface definition

=

Y The Test Code ﬂ

The code that we would like to write to test
the usage of the interface

=

The Generated Code ﬂ

The ugly generated code that allows our
tests 10 run

8 How it Works p

*Recording expectations
Verifying method calls

*Verifying arguments and returning stored values at run
time

*Final verification at the end of the test

*Additional challenges...

D _ .
.92 Pitfalls /)>

*Some custom coding needed to fit it into a TDD C++
project.

*The generator can be slow - it works best when combined
with a good dependency based build tool.

2.0 iIs new and not battle tested (original version used
successfully on two large-scale projects)

y
X# Where do we go from here? ﬂ

*We'd like to change from “throwing exceptions when a
failure occurs” to calling a “failure method” that would be
supplied by a plug-in.

*This would allow the library to more easily be integrated
Into existing test platforms without modifying the actual
generator.

*Go further with the C++ code generation idea - eliminate
the need to develop directly in C++.

ol A
X Thanks for Attending! ﬂ

Contact Us:
*Miller@AtomicObject.com

Pattison@AtomicObject.com

*All the code you’ve seen today can be found here:

www.atomicobject.com/pages/Moxy+Code+Generator

