
Scott Miller

Greg Pattison

An Automated Mock Object 

Generator for C++



Who We Are:

•Scott Miller & Greg Pattison of Atomic Object

•25 years (combined) of software development

•Employing Agile techniques since 2005

Welcome!



Why we wanted a C++ mock generator:

•Began working together on a new C++ project

•We wanted to apply interactive-based testing techniques 

we had used on previous projects (.Net & Java)

•Tried hand-coding a few mocks, but this was time 

intensive and error prone

Why?



•We looked around for an existing product or project.

•We found some stuff (mockcpp for one), but not a “Record & 
Playback” verification system we liked so much for our Java and C# 
projects

Evolution



•We wrote a few Python scripts to generate templates to ease the 
hand-coding of mocks

Evolution



•The discovery of GCCXML led to the first full-blown mock object code 
generator.

•The generator evolved over the course of the project, gaining 
functionality, but also acquiring a QT dependency

Evolution



•Moxy 2.0 is what we are showing you today. It has no platform 
dependencies

Evolution



The Greatest Invention Known to Man

•Before this project had begun, I had played around a couple times with 
parsing C++ header files, but never really got anywhere.

•Then, early in the C++ project I read an article that mentioned a cool 
project that parsed C++ code into XML.

GCCXML



•What’s more, there was also a Python library that read in the XML 
result of the parse and presented the information in a simple class.

•This was the tool we were waiting for. It opened up the possibility of 
generating C++ code based on an existing interface definition.

GCCXML



•Thanks to Brad King, Kitware developers and The Insight Consortium 
for this fabulous tool.

GCCXML



An example of a C++ interface definition

The Interface



The code that we would like to write to test 
the usage of the interface

The Test Code



The ugly generated code that allows our 
tests to run

The Generated Code



•Recording expectations

•Verifying method calls

•Verifying arguments and returning stored values at run 

time

•Final verification at the end of the test

•Additional challenges…

How it Works



•Some custom coding needed to fit it into a TDD C++ 

project.

•The generator can be slow - it works best when combined 

with a good dependency based build tool.

•2.0 is new and not battle tested (original version used 

successfully on two large-scale projects)

Pitfalls



•We’d like to change from “throwing exceptions when a 

failure occurs” to calling a “failure method” that would be 

supplied by a plug-in.

•This would allow the library to more easily be integrated 

into existing test platforms without modifying the actual 
generator.

•Go further with the C++ code generation idea - eliminate 

the need to develop directly in C++.

Where do we go from here?



Contact Us:

•Miller@AtomicObject.com

•Pattison@AtomicObject.com

•All the code you’ve seen today can be found here:

www.atomicobject.com/pages/Moxy+Code+Generator

Thanks for Attending!


